BaBar Beampipe Models

David Brown
Bill Dunwoodie
Mathias Steinke

Beampipe Models

¥ Reco and Simulation use different models

- / BBSim = GEANT 3
 - £ Fortran code
 - £ ASCI file geometry and material description
 - £ Material properties from Conditions Database
- / Simulation = DetectorModel
 - £ C++ code
 - £ Geometry and material description from Conditions Database
 - £ Material properties from Conditions DB (same as BBSim)

¥ Two issues are relevant

- / Consistency between the reco and simulation models
- / Accuracy with respect to what's in IR2

Why should anyone care?

Beampipe structure is compilcated

¥ Many different layers

- / Be
- / Water (cooling)
- / Gold (RF/photon shield)
- / Ni (plating on water channel)
- / Epoxy (oxidation barrier)
- / Ta (only near flanges!)

Y Structure changes with **Z**

- / Cooling channel changes shape
- / Outer radius increases
- / Tantalum foil, Aluminum, flanges, ...
- ¥ For more details see Bill Dunwoodie's recent work http://www.slac.stanford.edu/~wmd/beampipe/beampipe.material

Model History (incomplete)

¥ 1996 Initial reconstruction model

/ 2.58 cm radius carbon cylinder, wall thickness = 1.92 mm

£
$$X/X_0 = \sim 1\%$$
, dE/dx (min ion) ~ 0.8 MeV

/ Intended only to be a placeholder for the real model

¥ 1997-1998 Simulation model updated

/ Realistic model

£ Gold, water channel, Ni, ...

 $/ R_{outer} = 2.835 cm$

¥ March 2000 Reconstruction model updated (Matthias Steinke)

- / Consistent with 1998 simulation model
- / Material modeled as a single effective material
 - £ Net admixture the same as the simulation composite
 - £ Faster than modeling as separate components

Model History (continued)

¥ March 2000 Patrick Robbe

- / $R_{outer} = 2.785$ cm (in central region)
 - £ Simulation over-estimates amount of cooling water by 500 μm

¥ April 2000 Bill Dunwoodie

- / Research beampipe as-built
- / Based on drawings, measurements, engineer's memories,...
- / Summarized in a 10-page document
- / Differences with BBSim model (used in SP#)
 - £ Cooling water over-estimated
 - £ Epoxy and SVT RF shield missing
 - £ X/X_0 overestimated by ~0.1%
 - £ dE/dx (min ion) by ~ 0.1 MeV

What are we doing now?

¥ Reco and Simulation have agreed on a final model

- / 4 sections in Z
 - £ Out to flange
 - £ Includes Tantalum
- / No Azimuthal structure

¥ Reco and Simulation will (eventually) share code

- / Common parts will live in a common package
 - £ Modeled on how SVT Geometry is shared
- / Will only happen after Bogus is released
 - £ BBSim will not be updated

¥ Reco will implement the new model soon

- / Bill + Matthias have calculated the material
- / Data will be introduced in the DB (valid for real data)
- / New code will live in the TrkGeom package (Matthias)

Conclusions

- ¥ It's taken a long time to get the beampipe models both accurate and consistent
- ¥ The SP# simulation is not accurate
 - / The differences with as-built are small
- ¥ The reconstruction model will be updated soon
 - / Post-summer reconstruction and reprocessing
- **Y** The simulation model will be updated after Bogus is released
 - / Conditions DB will follow the time dependence
 - / Common software will be shared